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Identification of Structures 
Through Records Obtained During 
Strong Earthquake Ground Motion 
The problem of estimating a space dependent coefficient in a forced linear hyperbolic 
differential equation from the knowledge of the solution at one or more isolated points is 
dealt with. The continuous model of a structural system by a shear beam is used to study 
the utility of earthquake records in determining structural models. Starting with an ini­
tial "guess," a systematic method of iteratively improving the estimate of the structural 
stiffness using the information contained in the measured response to a known ground 
excitation is developed. A highly efficient and automatic numerical algorithm for this 
purpose, based on an optimal control formulation of the problem of history matching is 
developed. Numerical examples are presented showing the dependence of the estimate on 
the initial guess. The nonunicity of the estimate is demonstrated, pointing to the fact that 
though history matching at one or more points in a structure may be a necessary condition 
for arriving at an adequate model, it may not be a sufficient one. 

Introduction 

The increasing number of tall structures in seismically active 
areas all over the world has led, in recent years, to a considerable 
amount of interest in the determination of structural response to 
strong earthquake ground motions. The installation of accelero-
graphs nowadays in various large structures has greatly increased 
the pool of data pertinent to structural behavior during large 
ground excitations (e.g., Udwadia and Trifunac [l]1). The recent 
San Fernando earthquake of Feb. 9, 1971, for example, yielded 
about 180 acceleration histories that were recorded in building 
structures in the Los Angeles area (Hudson [2]). The acquisition of 
such data obviously holds out the possibility of obtaining im­
proved structural models which can then in turn be used to ascer­
tain the expected structural responses to future earthquakes. It 
therefore becomes important at this stage to assess critically the 
utility of such recordings in improving our understanding of the 
structural systems involved. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Design Engineering Division and presented at the Design 

Engineering Technical Conference, Washington, D.C., September 17-19,1975, 
of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manu­
script received at ASME Headquarters June 4, 1975. Paper No. 75-DET-77. 

This paper deals with the determination or updating of a build­
ing structural model from earthquake records obtained in the 
structure. More specifically, it concerns the estimation of structur­
al stiffness as a function of building height, based on noiseless 
measurements of structural motions at one or more levels in the 
structure, created by perfectly known ground inputs. 

Through the problem of estimating the stiffness and damping at 
the various levels of a building structure has been investigated by 
several researchers in the past (e.g., Berg [3], Nielsen [4], Ibanez 
[5]), they have concentrated on data obtained from vibration tests. 
All the investigations so far have used lumped-parameter models 
and few if any have attempted a systematic estimation procedure 
based on earthquake recordings. 

The salient feature of the technique proposed here is that the 
structure is considered a continuous system making the method 
applicable to all systems which can be mathematically modeled by 
linear hyperbolic partial differential equations. We have adopted 
Jennings' [6] shear beam model to represent mathematically a sim­
ple building structural system. Such a model has been shown by 
Jennings to be adequate in representing several tall steel as well as 
reinforced concrete buildings. 

The simplest approach to obtaining an estimate of the structural 
stiffness would be to try to obtain the "closest-fit" between the 
history of motion measured at one or more points in the structure 
and the calculated response of the model at the corresponding 

Journal of Engineering for Industry NOVEMBER 1976 / 1347 

Copyright © 1976 by ASME
Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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points. This can be done by starting out with a suitable guess of 
the parameters to be estimated, by visually/ examining the output 
of each simulator run, and then adjusting one or more of the pa­
rameters by intuition or experience (e.g., Wood [7]). However, such 
a trial and error procedure is often very time consuming and ex­
pensive. One would like then, in principle, to be able to have a sys­
tematic method which does not require an inordinate amount of 
computation time. 

An obvious method of achieving such a match of recorded and 
calculated responses would be to derive an iterative scheme, which, 
starting from an "initial guess" of the parameters, iteratively 
updates them so as to converge to the true values of the parameter. 
The commonly used procedure (Jacquard and Jain [8]) for this is 
to determine the so-called "sensitivity coefficients" which give the 
rate of change of the model response at the measurement points 
with respect to the parameters being estimated. These coefficients 
determine the way the parameter estimates need to be changed to 
improve successively the history match between the measured and 
calculated responses. However, a determination of these coeffi­
cients involves the integration of the system equations (n + 1) 
times (where n is the number of parameters to be estimated) at 
each iteration making the estimation procedure very time consum­
ing and therefore computationally inefficient. For instance, a fifty-
story building if modeled by 50 lumped masses (n = 50) would 
need at each iteration the integration of the system equation 51 
times. Considering that one may need 50 to 100 iterations, depend­
ing on the quality of one's "initial guess" for arriving at a good set 
of estimates, the computation times involved herein may become 
highly excessive. 

Alternately, the computation of the sensitivity coefficients by 
the method similar to that suggested by Jacquard and Jain [8] and 
Carter et al. [9] will require (m + 1) integrations of the system 
equation (where m is the number of observation locations) and a 
quadrature for evaluation of a convolution integral over the whole 
X space up to the observation time for each observation. This can 
also be easily seen to require a large amount of computation. This 
procedure can be made more efficient numerically by considering 
sensitivity coefficients corresponding to the rate of change of a sin­
gle scalar criterion, J , which measures the degree of history mis­
match (over the whole period of measurement) with respect to the 
parameters. 

The method proposed here is based on an optimal control for­
mulation of the history-matching problem. It gives the sensitivity 
coefficients of the scalar criterion J with respect to all the parame­
ters in a single integration of the system equation and its adjoint, 
thus reducing the number of integrations required at each itera­
tion from re + 1 to two. For tall buildings (large re), this would lead 

to a large computational economy over conventional methods of 
computing the gradient, especially when the number of iterations 
is large. A similar technique has been used by Chen et al. flO] in 
their identification of a parabolic partial differential equation. 

Having developed this efficient algorithm, the estimation tech­
nique has been applied to the study of building structural stiffness 
from 'input-output' records, obtained in structures during strong 
ground motion. Four different numerical examples pertinent to 
building structures have been illustrated. The critical importance 
of the "initial guess" and of the input characteristics to the estima­
tion problem is clearly brought out. The nonunicity of the estimate 
obtained in the solution of this inverse problem is indicated, and it 
is shown that though history matching at a particular level in the 
structure may be a necessary condition for obtaining the correct 
model, it is not a sufficient one. 

Theory 
(a) Structural Model. The "shear-beam" representation of some 

types of structures for purposes of studying their horizontal unidi­
rectional vibratory characteristics has been well documented in the 
past (Nielsen [4], Jennings [6]). The structural model adopted here 
consists of a shear beam whose stiffness varies with its height, x above 
ground level. It will be assumed that the mass distribution m(x) per 
unit height of the structure is known and that the stiffness distribution 
k(x) per unit height of the structure is to be estimated from mea­
surements at the base and one or more points elsewhere in the 
structure. Fig. 1 illustrates the structural system described by the 
equations 

mM 1% = h[Hx)^] 

W(0,t) : 

dw. 
k(x) 

dx' 

V(t) 

= 0 

(1) 

(2) 

(3) 

where w(x, t) is the total displacement at time, t, of point x ot the 
structure measured with respect to an inertial frame of reference 
and v(t) is the displacement history at the base of the structure. 
Assuming that the structure starts from rest, we have 

w{x, 0) = 0 

9w(x, 0) 
(4) 

at 
= 0 

The measurements are all assumed noise free and comprise of the 
time histories w°ba(xi, t); i e [1, m], t e [0, T], together with the base 
motion u(t). Though such an assumption is often not realistic, it 
will help in focusing our attention to the difficulties involved in the 
solution of the exact inverse problem without bringing in the 
added complications and uncertainties involved with noisy data. 

(b) Approach to the Identification Problem. The method 
involves iteratively changing the stiffness estimates, starting from 
an initial "guess" in a systematic manner so as to get successively 
better agreement between the measured response to a given 
ground motion input and the predicted model response, at the m 
measurement points xi, i = 1 m. The estimate k(x), is then 
such that the positive definite functional given by 

i m t 

* ,- = 1 0 
w(xi, flfdt (5) 

is a minimum. woh"(xi, t) is the measured response at point x; and 
w(xi, t) is the calculated model response [equations (1) to (4)]. The 
minimization of J is done by a gradient algorithm essentially fol­
lowing the hill climbing technique. 

(c) Unicity and Consequent Modification of the Error Cri­
terion. The problem of uniqueness of the estimates obtained by 
the process of history matching at a few isolated points has not so 
far been solved and is being currently investigated. The numerical 
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experience of the authors suggests, however, that unicity of esti­
mates in the unconstrained identification of the hyperbolic prob­
lem does not exist. Similar observations have been made by several 
authors in their discussion of parabolic partial differential equa­
tions (Chavent, [11], Chen et al. [10]). Workers in problems involv­
ing parabolic equations (Carter et al. [9]) have found, however, 
that putting inequality constraints on the estimated parameters 
'give rise to better convergence characteristics by confining the es­
timates to a portion of the parameter space of interest. These con­
straints yield more feasible values of the final estimates and are 
based on a prior knowledge of the ranges of values that the param­
eters being estimated can have. However, this procedure can be 
unsatisfactory because, as in linear programming, the final esti­
mates often reproduce the boundary values of the supplied con­
straints. 

In this paper two different types of constraints have been investi­
gated: (a) constraints on the magnitude of the gradient of the pa­
rameter function being estimated and (b) constraints on its second 
derivative. They were motivated by the physical requirement that 
the stiffness distributions change "smoothly" with height. 

These constraints on the function k(x), which is being estimat­
ed, are implemented by adding a penalty functional to J to give 

1 m T 

J= z -E / [«''""(*„0 -w(Xi,t)fdt 
A i = l 0 

r9/e " d% 
+ U [$** + ! / &** ^ LdX dx2 

where a and b are positive weighting factors. Minimizing this func­
tional will then lead to a history match as well as the satisfaction of 
the constraints by a reduction in the magnitudes of the first and 
second derivatives of k(x). The degree of satisfaction of these con­
straints will naturally depend upon the relative magnitudes of the 
weighting factors. For instance, when a = 0, no penalty is levied on 
the magnitude of the first derivative, so that the first derivative 
constraint is completely relaxed. 

It appears that in building estimation problems these derivative 
constraints are more helpful in obtaining a unique estimate than 
the inequality constraints. However, if a very large penalty is 
placed on the derivative constraint terms, it may considerably slow 
down the convergence of the minimization process. If, on the other 
hand, the function k(x), for example, does have definite gradients 
for a major portion of the x-space, the constraint (a) may adverse­
ly affect the final identification process. From this point of view, a 
more useful constraint for most structural systems would then be 
that pertaining to the second derivative. This has been verified by 
our building studies presented in the following sections. 

(d) Derivation of the Formula for the Gradient of J. Ad­
joining to J the constraint equation (1) that w(x, t) must satisfy, 
and using a multiplier function &(x, t) define 

d2
W(x, t) J=J+ J J *(x,t){m(x)-

0 0 dx2 

f[Hx)*£teJl]}dxdt (7) 
OX OX 

Then the first variation of J due to a variation in the estimate, 
bk(x), is given by 

L T m 

5J = -J J Ti[w0*°(x„ I) -w(x,l)]6w(x, t)5(x -x,)dtdx 
0 0 {=1 

L T 

L a 2 82fe.326fe 
dX

2' dx2 dx 

r ~ r ~ T / a t / \ 325w 8 rr / \ 8 5 M ; I 

Q -[5k(x)-^]}dxdt + o r d e r (8) 
ox dx 

t e r m s 

Integrating the various terms by parts and omitting for brevity the 
arguments (x, t) of w and * , we have 

J 0 dx dx dx ' „ J
 0 dx2 

rL 92/?.926fe 
^ o dX2 dx2 

d2k ddk ,L d3k „ , .,L 

+ / ^5k(x)dx, (10) 

and 
i r 

/ / *{ f f lW 
926w d5W-r dw-. 
m2 dx[Hx) T 7 1 ~ d~x[8Hx) Jx-^dxdt 

dfiw r r T i \ " " W i d * / % , 
J [wm( i ) — | - — m(x)6w(x,t) 

o 
T a 2 

dt dt 

9 ^ 
+ / -^72 m(x)5w dt] dx - J {^fk(x) 

o V 

~dX 

T 

0 

95w | 
dX • ' 

k(x)5w\ + J -—[ —— k{x))5wdx 

+ ^6k(x) 
dw 

• / L s r 5 r 6 f e ( * W * (ID 

Using equations (8) to (11) and collecting the coefficients of 5k(x) 
and bw(x, t), the variation SJ can be expressed as 

d^dbk 93fe , 
3^ 2 dx 9#3 6 J = a [ - - 6 k ( x ) + b $% ^ - b i%6k(x)] 

J l ( a " a ^ 
o °x 

9*4 

TS-$> dW ) " / ^TdlldkMdx 
0 dx dx 

, r - r T / % ° o w i • 9 * , . , . „ i r i , 
+ J {wm(x)—r- I --rT{x,t)m(x)5w\ \dx 

0 dt 0 Of „ 

d5w 

d5w,L 9 * 
/ {**(*> dx, 

0 ° x 0 

k(x)8w\ + mk{x)-f-\ }dt 
9 * 0 dX ' o 

L . T _ a2,l r ' r ' t° * / \ 9 r / N 9 * -
+ K K{^m{x)~^x[k{x)^ 

-T/iw^ix^t) - w ( * „ 0 ] 6 ( ^ -xt)}6wdxdt (12) 

Variations on equations (2), (3), and (4) similarly lead to the rela­
tions 

and 

5w(0,t) = 0 

, . . 9 5 W I r 7 , , , dw I 
k{L)~^\ +5k(L) — \ 

5w(x, 0) = 0 

96M;, 

= 0 

(13) 

(14) 

(15) 

dt 
-be, 0) = 0 

respectively. If now the function ^(x, t) is restricted such that 

dt2 dxL' 

and 

dx 

+ £ [w0*3 (xit I) - w(x{, t)]5(x - x{) (16) 

(17) 

(18) 

(19) 

(20) 

y(x, 

9 * , 
oTix' 

MQ.t) 

9 * 
k{L)-d~x~ 

r) = o, 

T)= 0, 

= 0, and 

(L,t)= 0; 

then equation (12) reduces to 
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SHEAR BEAM MODEL MASS DISTRIBUTION 

l i t i a l gue 

I = 0 

1 = 1 + 1 
e g r a l e s y s t e n 

S t o 
ind find J 
•• u(x. 0 

I n t e g r a t e the adjoint 
s y s t e m equat ion backw 
us ing a p p r o p r i a t e fore 

S tore Y(x, t) 

it 
If (I > l .) u s e conjugate 

corij 
g r a d i e n t formula to find the -
d i r e c t i o n of s e a r c h . O t h e r ­
w i s e , use the d i r e c t i o n of the 
g r a d i e n t a s the d i r e c t i o n of s e ; 

Do u n i d i r e c t i o n a l s e a r c h in the '" 
d i r e c t i o n of s e a r c h to find a local m i n i m u m . 

Update k to be equal to that a t the 
loca l m i n i m u m found in above step 

Is A v e r a g e - s t e p s ize for l a s t four 
i t e r a t i o n s too s m a l l ? 

I Stop J 

6J= [a 
dX 

Fig. 2 

b^}SHx)\Q+bdx2 Qx% 

Z% 
T 9 * dw -

s.^-^-i^^^^ (21) 
hxr dx4 J

0
 dx dx 

It may be noted that equations (16) to (20) define an initial value 
problem with point sources and appropriate boundary conditions 
and, hence, define ty(x, t) uniquely. Having found \t, the deriva­
tive of J with respect to k(x) can be determined from equation 
(21). 

Since SJ = 6J if w(x, t) satisfies the system equations (1) to (4), 
we have 

dk 3ik1 &J= f [fta%-b^][6b-L)-6M]-a 

— — dt}&k(x) + fi­
ll 

d2k ^ , 94* + b -
dX "dxZJL~-" ~' ~S"'J " dx2 ' " dx4 0 ux dx3 

dk „ , dsk , 82k •\a¥x-2b* + b**lte-L)-tM] 

• 8 ' W ] -a 
Bx

2 
<^k 
dx4 

+ J ^-^Ldt}bk{x)dt (22) 
0 OX OX 

Then, the functional derivative of J with respect to the function 
k(x) is given by 

bJ _ 
5k(x) ~ 

52k 

dk 
dx 

" 2 6 B +b~2[5(x-L)-5(x)} 
X32k 

dx2 dx2 dxi J
 0 dx dx 

(23) 

For numerical computations it will not be necessary to use equa­
tion (23), because when working with the discritized version, equa­
tion (21) can be directly utilized. 

mW —" (mass/height) 

STIFFNESS DISTRIBUTIONS 

IXIO4 2x10* 
k(x}-*-(sliffness/heigh!) kM-Mst i f fness/heighi ) 

CASE 2 

k(K)-«-(5i'ffiiess/fieigh!) 

CASE 3 

kW-Msiirfness/height] 

CASE 4 

Fig. 3 

Algorithm 
The minimization of the error criterion, J , is done by the hill 

climbing technique. As it is not possible to work computationally 
with an infinite dimensional function k (x), an appropriate discret­
ization of k(x) by a set of N values of k at the various node points 
was done. Such a discretization leads to J being a positive definite 
function in N dimensional k -space. The minimization of J is then 
effected by climbing down this N dimensional hypersurface tak­
ing, at each stage, a step in the direction of the local negative gra­
dient of J with respect to the N component vector k calculated 
using equations (21) to (23). 

As is well known, the rate of convergence of a gradient algorithm 
is often considerably enhanced, without much increase in compu­
tational load, by the use of the conjugate gradient algorithm 
(Polak, 1973). However, this algorithm being designed for nearly 
quadratic functions was not found to perform well when the model 
parameters were greatly different from their actual values, the 
functional J, in those cases, being far from a quadratic surface in 
the parameters to be estimated. Hence, the method of steepest de­
scent was used in the initial phases of the estimation process. 
Later on, the iterations were performed using the conjugate gradi­
ent algorithm in order to get improved convergence characteristics. 

The unidirectional search at each iteration consisted of evaluating 
</(k) at the starting point of each iteration, ko, and at two equidistant 
points, ki and k2, in the direction of the negative gradient as obtained 
by equation (21) (or in the search direction when using the conjugate, 
gradient method). The distance between the successive points was 
taken to be the current search-step size. Next, the derivative of J at 
ko in the search direction was evaluated by projection of the gradient 
in the search direction. This derivative together with the values of J 
evaluated at points ko, ki, and k2 were used to determine if the min­
imum of J fell beyond the three points or between the first point (ko) 
and the third point (k2). If the minimum fell beyond k2, additional 
steps were taken until three successive values of J indicated the 
presence of a local minimum between them. If the minimum fell be­
tween k0 and ki, the steps were successively halved until a local 
minimum was indicated between three successive points by three 
successive values of J. A parabola was next fitted between the three 
points and the minimum point taken to be that of the parabola. The 
search step was set at the beginning of each iteration to be equal to 
the average of the actual steps resulting in the last four iterations. This 
was done to keep the number of evaluations of J small. Fig. 2 shows 
a summary flow chart of the algorithm used. 

Application and Numerical Results 
As the determination of the mass distribution in a structure is in 

general more tractable from general engineering data than the dis­
tribution of structural stiffness, it has been assumed that the mass 

1350 / NOVEMBER 1976 Transactions of the ASME Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



32 

28 

24 

1 2 ° 
X 
^ 16 
UJ 
X 

12 

8 

4 

0 

-^ i " V 1 
-
-

-

" 

1 

/ I 

i I 
i 

I 

'<., i 
i, i v 

EXACT VALUE OF M«l 
INITIAL GUESS OF k(<) 
ESTIMATE OF k(«IAT THE END OF I SECOND 
ESTIMATE OK M»)AT THE ENO OF 3 SECONDS 
ESTIMATE OF M. )AT THE END OF 8 SECONDS 

60 
I.O I . 5 . 

k(x) — 

MODEL RESPONSE AT ROOF 

TIME IN SECONDS 

cu 
Fig. 4 

distribution is perfectly known and that the identification of the 
stiffness based on response records is required. However, it may be 
pointed out that the approach taken here can be easily extended to 
allow a simultaneous estimation of both m(x) and k(x). In view of 
the level of accuracy to which m(x) is generally known, the high 
computational costs involved in making a multifunction search, 
and the possibility of a more severe lack of unicity, this has not 
been done here. Further, soil structure interaction has been ne­
glected and the structure is assumed to respond as a shear beam on 
a rigid foundation. 

Fig. 3 shows the building structure modeled as a shear beam 
having a constant mass distribution all along its height. The effec­
tiveness of the identification scheme proposed here is studied as 
applied to four different types of stiffness distributions, k(x), indi­
cated in Fig. 3(c) by the plots of stiffness/unit height as a function 
of the building height, x. Case 1 corresponds to a constant stiffness 
distribution all along the height of the structure (Fig. 3). The mass 
and stiffness values are chosen such that ' the fundamental period 
of the structure is 1.8 sec, corresponding to say a 16 to 20 story 
building. Case 2 refers to a linearly reducing stiffness. Case 3 and 
Case 4 have 'notch' shaped distributions wherein the stiffness de­
creases up to a certain height and then increases [Fig. 3(c)]. Such 
situations could be caused by the weakening of local areas along 
the height of the structure due to earthquake damage. 

Using these exact stiffness distributions indicated in the four 
cases, a numerical integration of equations (1) to (4), for known in­
puts, yielded the "measured" displacement response at the roof of 
the structure. 

For purposes of integration the height L was discretized into 32 
equal segments of the unit length. This reduces the function k(x) 
to a 33 parameter vector, each component of which is the value of 
k(x) at each of the 33 grid points. Time was discretized in steps, 
At. To ensure unconditional stability in the integration of the par­
tial differential equation, an "implicit scheme" was used in which 
the space derivatives occurring on the right hand side of equation 
(1) were taken as their time averages calculated over the earliest 
and latest times occurring in the discretization of the time deriva­
tive on the left hand side of the equation (Fox, 1962). 

The input ground motions were constructed as a sum of four sin­
usoids (At = 0.01 sec) of various frequencies [Figs. 4(b), 5(b), 6(b), 
1(b), 8(b) and 9(b)] and are fairly representative of close-in earth­
quake type ground excitations. Figs. 10(b) and 11(b) (At = 0.05 sec) 
show 30 sec of the El Centro Earthquake, 1940, NS component of 
ground displacement also used as inputs for identification purposes. 
These computed roof motions were then assumed to be the "mea­
surements," and the inputs to be the recorded ground shaking. These 
input-response histories were next used to estimate the stiffness 
distribution (using the scheme resulting from the optimal control 
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formulation of the history matching problem) starting with various 
initial "guess distributions." The final estimates were then com­
pared with the exact values in each of the four cases. 

Fig. 4(a) shows the exact values of k(x) (thick line), the starting 
guess of k(x) (- -), and the estimates of k(x) for various time 
lengths of record used in the identification. The initial guess was 
taken to be a constant with respect to height. The input basement 
motions, the "measured response" and the model response for the 
stiffness distribution arrived at, using an 8 sec length of time histo­

ry, are indicated in Pig. 4(b). As seen in the figure the history 
match is excellent. The values of k(x) obtained at the end of 8 sec 
of identification are very close to the exact values. 

It was observed that when starting with an initial guess quite far 
from the exact value, the convergence was very slow and, hence, 
computationally expensive if a long record of measurements was 
used for history matching. The computational effort was further 
increased because at each iteration the equations had to be inte­
grated over a longer time period. To reduce the computation times, 

Table 1* 

Time Length 
of Record 
Analyzed 

INITIAL 
GUESS 

(0 sec ) 

l s e c 

3 sees . 

8 sees . 

* Tabulated q u 

Normalized 
Mean 

E r r o r in 
Est imate 1 

3 3 % 

0. 93% 

0. 42% 

-0 . 04% 

antit ies a r e defi 

Normalized 
Standard 
Dev. of 

E r ro r in 
Estimate 

0% 

6.17% 

3. 77% 

3. 08% 

ed in Appendix 

Normalized 
R. M.S. 

E r r o r in 
Es t ima te 3 

3 3 % 

6. 24% 

3.79% 

3. 08% 

1. 

Mean 
E r r o r in 

Displacement 
History Match 

at Roof4 

0. 91 X 10"3 

0 4 X 10"4 

0 85 X 10"5 

-0 .46 X 10"5 

Standard 
Dev. of 

E r r o r in 
History Match 

at Roof 

0 27 X 10"1 

0. 24 X 10"3 

0 3 6 X 10"3 

0.57 X 10"3 

Weighting 
Factor 

Of Second 
Derivative 

Penalty 

0.2 X 10"9 

0 6 X 10"9 

0.16 X 10~8 
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1 sec of data was first processed, updating the value of k(x) by ob­
taining a good history match for that duration. This updated esti­
mate of k(x) was next used as an initial guess for analyzing a 3 sec 
data length obtaining thus a new estimate of k(x). The 3 sec esti­
mate was then used as an initial guess in analyzing the entire 8 sec 
length of record, thus leading to a faster convergence. Fig. 4(a) 
shows the estimate of k(x) so obtained at the end of 1 sec ( ), 3 
sec (—) and 8 sec ( ) of analysis. 

The convergence to the correct values was found to largely de­
pend on the values chosen for the initial guesses. Starting guesses 
which were both higher and lower than the exact values were cho­
sen. It was found that for the constant stiffness case and the lin­
early varying stiffness case [Cases 1 and 2, Fig. 3(c)], the conver­
gence was either very slow or nonexistent when the starting guess 
was higher than the mean value of the exact distribution, by more 
than 45 percent. Starting with these 'higher' initial guesses, the 

Table 2 

Time Length 
of Record 
Analyzed 

INITIAL 
ESTIMATE 

(0 sec . ) 

l s e c . 

3 sees . 

8 sees . 

Normalized 

E r r o r in 
Es t imate 1 

3 3 % 

0. 24% 

0. 26% 

0. 2Z% 

Normalized 
Standard 
Dev. of 

E r r o r in 
Estimate 

0% 

2.76% 

2. 59% 

2. 48% 

Normalized 
R. M. S. 

3 3 % 

2.77% 

2 6%. 

Z. 49% 

Mean 
E r r o r in 

Displacement 
History Match 

at Roof 

0,91 X 10"3 

-0 ,7 X 10"4 

-0 . 48 X 10"6 

-0 .46 X 10"5 

Standard 
Dev. of 

E r r o r in 
History Match 

at Roof 

0.27 X 10"1 

0.57 X 10"3 

0.81 X 10"3 

0.1 X 10~2 

Weighting 
Fac tor 

of Second 
Derivative 

Penalty 

0. 1 X 10"8 

0.3 X NT8 

0.8 X 10"8 
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history matching process for a 1 sec record duration was found to 
lead in all cases [Fig. 3c) ] studied in this paper to an updated value 
of k(x) corresponding to an approximately constant distribution 
lying close to the mean value of the exact stiffness distribution. 
Using this updated value oik(x), 3 and 8 sec records were sequen­
tially processed leading to a quick convergence. For a study of ini­
tial guesses lower than the actual values, a 1 sec record of data was 
processed. If the updated estimate lay close to the true mean 
value, the attempt was taken to be successful, since the use of such 

an update in the subsequent analysis of longer records always 
showed convergence. For Cases 1 and 2 [Fig. 3(cJ] no convergence 
occurred if the initial guess was lower than the mean value of the 
exact distribution by more than 35 percent. 

Cases 3 and 4 [Fig. 3(c)] with notched distributions were found to 
tolerate smaller errors in the initial guesses for adequate convergence 
and did not converge for initial guesses higher than 140 percent and 
lower than 80 percent of the exact mean. 

Despite the close history match observed in Fig. 4(b), the esti-

Tablo 3 

Time Length 
of Record 
Analyzed 

INITIAL 

Gurss 
(0 B ec B . ) 

1 sec. 

3 sees . 

8 sees 

Normalized 
Mean 

E r r o r in 
Es t imate 1 

20. 0% 

-3.4% 

-1.6% 

-1.61% 

Normalized 
Standard 
Dev, of 

E r r o r In 
Es t imate 4 

19 8% 

21 53% 

13 5 7% 

13. 56% 

Normalized 
R . M . S . 

E r r o r Lev 
Est imate 

28 1% 

21. 8% 

13 66% 

13 6% 

Mean 
E r r o r In 

Displacement 
History Match 

at Root4 

-0 1 X 10"2 

-0 .6 X 10"3 

0 35 X 10"4 

-0 26 X 10"4 

Standard 
Dev, of 

E r r o r in 
History Match 

at Roof 

0,26 X 10"1 

0. 5 X 10"2 

0.15 X 10"2 

0,2 X 10"2 

Weighting 
Factor 

of Second 
Derivative 

Penalty 

0.1 X 10"1C 

0 3 X 10"1 

0, 8 X 10"1 
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mate of ftfrj [Fig. 4(a)] shows an oscillatory behavior near the top 
and bottom of the shear beam. This history matching here was 
done under the constraint that the first derivative of k(x) be as 
small as possible all over the x domain. The first derivative penal­
ty term was imposed in minimizing J by using a positive coeffi­
cient, a, in equation (6) and setting b equal to zero. Figs. 5(a) and 
5(b) show the results of placing a constraint on the second deriva­
tive of k(x) (implemented by setting a = 0 and b equal to a posi­

tive quantity). Fig. 5(b), while indicating the same quality of histo­
ry match as Fig. 4(b), shows that the zig-zag nature of the stiffness 
estimate has been substantially controlled. The value of b used in 
the definition of the functional J, however, needs to be carefully 
chosen. Too large a value would slow down the convergence of the 
history matching process substantially, while too small a value 
would lead to oscillatory estimates. A little experimentation was 
needed before satisfactory balance between the gradient penalty 

Table 4 

Time Length 
of Record 
Analyzed 

INITIAL 
GUESS 

(0 sec . ) 

1 sec . 

3 sees . 

8 sees . 

Normalized 

E r r o r in 
Es t ima te 1 

0% 

-2.64% 

-2.44% 

-1 88% 

Normalized 
Standard 
Dev. of 

E r r o r in 
E s t i m a t e 2 

19. 8% 

16. 19% 

12. 8% 

11.12% 

Normalized 
R. M.S. 

E„or l„ 
Est imate 

19- 8% 

16.40% 

13.02% 

11. 28% 

Mean 
E r r o r in 

Displacement 
History Match 

at Roof4 

-0 . 43 X 10" 3 

-0 2 X 10"3 

- 0 . 36 X 10"5 

-0 .24 X 10"4 

Standard 
Dev. of 

E r r o r in 
History Match 

at Roof5 

0. 52 X 10~2 

0. Z X 1CT3 

0. 17 X 10"Z 

0. 13 X 10"Z 

Weighting 
Fac to r 

of Second 
Derivative 

Penalty 

0.5 X 10"8 

0.15 X 10"7 

0.4 X 10"7 
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terms and the history mismatch terms in functional J (equation 6) 
was achieved. The value of b was required to be increased in direct 
proportion to the length of record analyzed. For all subsequent 
work presented in this paper, the second derivative penalty was 
adopted with a = 0 and b ^ 0 (equation 6). 

Table 1 summarizes the results of the estimation scheme applied 
to the constant stiffness case using the first derivative penalty (a 
^ 0, b = 0) term in J. The initial guess was 33 percent higher than 
the exact value; after processing 1 sec of data, the normalized 
mean value (Table 1) reduced to less than 1 percent and the nor­
malized standard deviation to about 6.2 percent. Processing of 

longer and longer lengths of record reduced the errors. After 8 sec 
of applying the identification technique with the first derivative 
penalty, the normalized mean error reduced to -0.04 percent and 
the standard deviation to 3.08 percent. The results of applying the 
second derivative penalty (a = 0, b ^ 0) are shown in Table 2. 
Though the mean error in estimated stiffness is slightly larger in 
Table 2 than in Table 1, the standard deviations are smaller, indi­
cating a smoother and therefore better overall estimation. 

Tabulated are also the statistics of errors in history matching 
over various record lengths. The standard deviations of these er­
rors increase in each table from the result of the 3 sec to the result 
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of the 8 sec record lengths. In spite of the apparent worsening of 
the quality of history match of the latter case compared to the for­
mer, the results of 8 sec record length analysis represent an im­
provement on those of the 3 sec run. This is because the quality of 
the history match for an 8 sec record length using the estimates of 

a 3 sec run are much worse than that of the history match for 8 sec 
using the final estimates of the 8 sec run. Thus, the amount of in­
formation extracted in the latter case is larger than in the former 
case. The quality of history match [Figs. 4(b) and 5(b)] is nonethe­
less excellent. Average history match error is 2-3 percent of the 

Table 5 

Time Length 
of Record 
Analyzed 

INITIAL 
GUESS 

(0 sees . ) 

i s e c . 

3 sees . 

8 sees . 

Normalized 
Mean 

E r r o r in 
Es t imate 1 

35.25% 

-3.52% 

-4.18% 

-2 27% 

Normalized 
Standard 
Dev. of 

E r r o r in 
Es t ima te 2 

19. 05% 

23.1!% 

19. 6% 

14. 0% 

Normalized 
R. M. S. 

E r r o r in 
E , . W = 3 

40.06% 

23.38% 

20 08% 

14. 17% 

Mean 
E r r o r in 

Displacement 
History Match 

at Roof 

0. 87 X 10" 3 

0. 37 X 10~4 

0. 1 X 10~4 

0.73 X 10~6 

Standard 
Dev. of 

E r r o r in 
History Match 

at Roof5 

0. 28 X I0"1 

0.4 X 10~3 

0. 15 X 10"3 

0.96 X 10"3 

Weighting 
Fac tor 

of Second 
Derivative 

Penalty 

0.4 X 10"8 

1. 2 X 10"8 

3.Z X 10"8 
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rms measured displacement. 
Figs. 6 and 7 (Tables 3 and 4) indicate the estimation carried out 

for Case 2 [Fig. 3(c)] corresponding to a linearly decreasing stiff­
ness, for two initial guesses. The history matching procedure, for 1 

the standard deviation is slightly increased (Table 3). However, a 
reduction in the mean error here represents a better estimate than 
the initial guess, as the estimates are now scattered more evenly 
about the true mean value. This is clearly brought out by the plots 

sec, gives a good estimate of the mean stiffness [Fig. 6(a)], though of the estimates at various stages of the identification process [Fig. 

Table 6 

Time Length 
of Record 
Analyzed 

INITIAL 
GUESS 

(0 s e c ) 

l « c . 

3 sees . 

8 sees . 

Normalized 

E r r o r in 
Es t imate 1 

7. 18% 

-2 . 71% 

-2 88% 

-2 . 68% 

Normalized 
Standard 
Dev, Of 

E r r o r In 
Es t ima te 2 

14.19% 

14. 12% 

13.42% 

13.16% 

Normalized 
R. M. S. 

E r r o r ^ 
Est imate 

15. 9% 

14. 38% 

13- 73% 

13. 43% 

Mean 
E r r o r in 

Displacement 
History Match 

at Roof4 

0.4 X 10"3 

0. 74 X I0" 4 

0. 97 X 10"4 

0 116 X 10"3 

Standard 
Dev. of 

E r r o r in 
History Match 

at Roof 

0. 12 X 10"1 

0. 27 X 10"3 

0.146 X 10"2 

0.Z49 X 10~Z 

Weighting 
Factor 

of Second 
Derivative 

Penalty 

0,8 X I0" 1 0 

2.4 X 10"10 

3 . 2 X 1 0 " 1 0 
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5(a)]. A comparison of Figs. 6(a) and 1(a) indicates that, though 
the convergence may be slightly slower in the ca9e where the initial 
guess is further off from the true mean value, the results obtained 
in the two cases are very similar. Again, the history match between 
the model and 'measured' response is very good for both initial 
guesses. 

Figs. 8 and 9 (Tables 5 and 6) summarize the results for Cases 3 
and 4 [Fig. 3(c)] where the true stiffness distributions are more 

complex and exhibit a 'notch' shaped feature. Though the normal­
ized errors (Tables 5 and 6) are small, the standard deviations of 
the estimate errors are large. Fig. 8 shows that the identification 
scheme has been able to recover the notch-like behavior in the 
upper region of the structure. However, in the lower regions, the 
stiffness estimates are poor. This is due to the fact that inverse 
problem of estimation posed here is insensitive to the actual values 
of the stiffnesses around the base of the structure. Improved esti-
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mates in these parts of the structure may require measurements at 
several points along the height, in addition to measurements at the 
roof. Fig. 9 shows similar features indicating that the estimation of 
building stiffness from input output records may become extreme­
ly difficult for complex distributions. Despite the excellent history 
match observed between the "measured" and the model response, 
the estimates of the stiffness are very poor. 

This lack of sensitivity of the structural roof response recorded 
over the 8 sec duration is extremely significant, for it clearly indi­
cates the inherent nonuniqueness underlying the estimation prob­
lem and demonstrates that history matching even under noiseless 
measurement conditions may not be a sufficient condition for de­
termining the stiffness distribution in a structure. Some recent re­
sults in nonuniqueness have been obtained in reference (13). 

Dependence of Stiffness Estimate on Ground Input 
In addition to the dependence on the initial guess and the num­

ber of measurement points in the structure, the nature of ground 
input appears to be highly instrumental in determining the degree 
of success achievable in the identification process. 

As demonstrated in Figs. 4(a) to 9(a), there is little change in 
the stiffness estimates obtained in going from an analysis of a 3 sec 
record length to an 8 sec record length. This lack of improvement 
in the stiffness distribution indicates that the additional amount 
of information about the stiffness available from an analysis of the 
additional 5 sec length of data, beyond 3 sec, is negligible. This is a 
consequence of the fact that the input data is composed of four 
sinusoids and is, therefore, not broad band. For such narrow band 
ground input, then, beyond a certain time length no additional in­
formation is gained by an analysis of longer and longer record 
lengths. Ground motions generated by distant earthquakes com­
prise, in the main, long period surface waves. The high frequency 
waves get attenuated faster because of material damping through 
the earth media. Also, attenuation due to geometric spreading oc­
curs. Such ground inputs would have a narrow band nature making 

the above discussion on their information content from the view­
point of building identification, applicable. 

Close-in ground motions, on the other hand, tend to be richer in 
various frequency contents and, hence, may provide inputs which are 
more conducive to better identification. Figs. 10 and 11 (Tables 7 and 
8) show the identification carried out using the El Centro 1940, NS 
displacement record (Ai = 0.05 sec). The estimates look better than 
those obtained in Figs. 7 and 8. However, the edge-effects at the 
boundaries are quite marked. Despite the close distance (15 km) of 
the recording station from the fault, the ground motion shows a strong 
predominance in the low frequencies. 

For waves to "feel" the local changes in building stiffness, their 
wavelengths must be comparable to or shorter than the characteristic 
dimensions of such local features. Thus, it might be expected that 
ground motions containing substantial high frequencies would yield 
more information about building stiffness. Consequently, a better 
identification of the structural stiffness would be possible. Fig. 12 
(Table 9) shows the identification carried out using colored noise as 
the input (At = 0.025 sec). As observed from a comparison of Figs. 
4(a), 10(a), and 12(a), the estimate using the high frequency input 
is much improved. It may be noted, though, that for all three cases 
[Figs. 4(b), 10(b), and 12(b)], the quality of history match is excel­
lent. 

Conclusions and Discussion 
1 A systematic computationally efficient scheme for identi­

fying parameters in systems that can be expressed by linear hyper­
bolic differential equations has been developed. The standard 
method of sensitivity coefficients requires the system equations to 
be integrated n + 1 times, at each iteration step, where n is the 
number of grid points. The integration needs to be carried out 
once for the current k. Perturbations of the n dimensioned k vec­
tor lead to the remaining n equations to be integrated to get all the 
sensitivity coefficient. The technique used here requires just two 
integrations at each iteration step—the integration of the system 
equation and its adjoint. Since the number of iterations for a typi-

Table 7 Scaled N-S component of 1940 El Centro earthquake motion data 
used (Case: 2) 

Time Length 
of Record 
Analyzed 

INITIAL 
GUESS 

(0 sec .} 

5 sees . 

15 sees . 

30 sees 

Normalized 
Mean 

E r r o r in 
Es t imate 1 

0. 0% 

3. 76% 

2. 057o 

2.04% 

Normalized 
Standard 
Dev. of 

E r r o r in 
Es t imate 2 

15.84% 

11.15% 

7 .42% 

7.42% 

Normalized 
R. M.S. 

££'.£ 

19 84% 

11, 77% 

7.69% 

7 70 % 

Mean 
E r r o r in 

Displacement 
History Match 

at Roof4 

-0 07 X 10"4 

-0 .07 X 10~4 

-0,14 X 10"5 

0.24 X 10"5 

Standard 
Dev. of 

E r r o r in 
History Match 

at Roof 

-2 
0. 07 X 10 

0,37 X 10~3 

0.35 X 10"3 

0.57 X 10~3 

Weighting 
Factor 

of Second 
Derivative 

Penalty 

0, 225 X 10" 

0.675 X 10" 

0. 135 X 10" 

Table 8 Scaled N-S component of 1940 El Centro earthquake motion data 
used (Case: 3) 

Time Length 
of Record 
Analyzed 

INITIAL 
GUESS 

(0 sec . ) 

5 sec . 

15 sec . 

30 sec. 

Normalized 
Mean 

E r r o r in 
Es t imate 1 

1.43% 

0, 29% 

- 1 . 52% 

- 1 . 82% 

Normalized 
Standard 
Dev. of 

E r r o r in 
Es t imate 2 

19. 05% 

18. 88% 

16.48% 

16. 55% 

Normalized 
R. M.S. 

^i:> 

19.11% 

18. 88% 

16 55% 

16.65% 

Mean 
E r r o r in 

Displacement 
History Match, 

at Roof4 

0.105 X 10"4 

-0 .74 X 10"7 

0 25 X 10" 4 

-0.12 X 10"5 

Standard 
Dev. of 

E r r o r in 
History Match 

at Roof 

0.72 X 10"3 

0.62 X 10"3 

0. 88 X 10~3 

0. 40 X 10"3 

Weighting 
Factor 

of Second 
Derivative 

Penalty 

0. 27 X lO"^ 

0 81 X 10"9 

0 16 X 10" 
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Table 9 Identification using colored noise (Case: 2) At = 0.025 sec. 

Time Len e th 
o( Record 
Analyzed 

INITIAL 
GUESS 

(0 sec . ) 

5 sec . 

10 see 

2« sec. 

Normalized 
Mean 

E r r o r in 
Est imate 

33. 3% 

-2 . 35% 

0.071% 

-0.11% 

Normalized 
Standard 
Dev. of 

E r r o r In 
Est imate 

0% 

8.1% 

4. 61% 

2. 39% 

Normalized 
R. M.S. 

E r r o r i ^ 
Est imate 

33.3% 

8.44% 

4. 61% 

2.40% 

Mean 
E r r o r in 

Displacement 
History Match 

at Roof4 

0.64 X 10"4 

-0.636 X 1 0 - 4 

0.234 X 10~B 

-0 . 36 X 10"4 

Standard 
Dev. of 

E r r o r in 
History Match 

at Roof 

0. 915 X 10~Z 

0.167 X 10"2 

-2 
0,182 X 10 

0. 135 X 10"2 

Weighting 
Fac tor 

of Second 
Derivative 

Penalty 

0. 69 X 10~9 

0.138 X lO"' 

0.276 X 10" 

cal problem may be anywhere from 75 to 100, the method proposed 
yields an enormous computational economy, especially when n is 
large. 

2 Instead of the inequality constraints usually employed in 
such problems, penalty functions in terms of the first and second 
derivations of the stiffness with respect to height were used. These 
functions were found very helpful in additionally constraining the 
estimates, though they could not eliminate the nonuniqueness 
problem completely. 

3 Application of the technique to the estimation of building 
stiffnesses (as a function of height) through the use of basement 
and roof records and the proviso that the building can be modeled 
by a continuous shear beam indicate that 
(a) the convergence towards the true estimates can only be 

reached when the initial guesses are sufficiently close to the 
exact values. For cases of constant stiffness distributions and 
linearly varying distributions, initial constant guess distribu­
tions may differ from the mean of the exact distribution by as 
much as 20 to 30 percent and yet converge rapidly to the cor­
rect distributions. 

(b) the speed of convergence is greatly influenced by a proper 
preconditioning of the estimates before longer and longer rec­
ords can be efficiently handled. A sequential updating of the 
estimate, gradually using longer and longer time lengths is 
most efficient. 

(c) the problem of nonuniqueness of the estimate may become an 
important one in the sense that a numerically obtained esti­
mate k(x), obtained after a good history match is established, 
may differ widely from the true function k(x), depending on 
the initial guess, ko(x), that is chosen and the true function 
k(x). This points to the fact that responses of model and sys­
tem may differ for inputs different from those used in the 
identification process. 

(4) the success of the identification process is strongly dependent 
on the nature of the ground inputs 
(a) for ground motions, which contain a few predominant 

frequencies, the identification, beyond a certain record 
length, is only marginally improved by taking longer 
and longer record lengths. 

(b) broad band inputs containing high frequency waves 
whose wavelengths are comparable to the characteristic 
lengths of the local stiffness variations yield good stiff­
ness estimates. 

4 As of today, several investigators have used the history 
matching of roof records to be a criterion for establishing the cor­
rectness of the parameters of the models, usually of lumped mass 
kind, representing structural systems. The nonunicity of such an 
estimation indicated here shows that even under ideal measure­
ment conditions, though such matching may be a necessary condi­
tion in establishing the parameter values within the framework of 

an assumed model, the constraints imposed may not be sufficient 
to tie down the estimates uniquely. 
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APPENDIX 1 

Mean e r ro r =Yj(k estimated K exact kexact)/N 
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£-1 (« estimated «exact)/-<v 

1 Normalized mean e r ror = — ^ 
S k e x a c t / N 
i-i 

pMk estimated ~ * exact ) ~ m e a I 1 error]2 

2 Normalized standard deviation in estimate = / — s 

M S fe exact/TV]2 

M 

CJ\K estimated "exact/ 
/ M 

3 Normalized RMS er ror in estimate = 
iV[I) h exact /iV"]2 

(=1 

4 Mean er ror in displacement history = A = TJ ( Zi'observed — ^calculated ), where p&t = T 
match at roof '-1 

5 Standard deviation of e r ro r in history = v Z/(w>0bserved - ^calculated - A) /P 
match at roof 

fi 
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